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Abstract: Classical ordinal logit and probit models are used in studies where the dependent variable 

is categorical and ordinal. In order to use these models, the assumption of parallel slopes must be met. 

If this assumption is not met, the generalized ones of the ordinal logit and ordinal probit models, 

which are more flexible in terms of assumptions, or the multinomial logit model can be used. The aim 

of this study is to discuss in detail the ordered logit and ordered probit models, which are developed 

when the dependent variable category is more than two. For this purpose, a sample data set was taken 

and first of all, the assumption of parallel slopes was investigated. While the validity of the models was 

tested with the likelihood ratio test statistic, AIC and BIC and deviation statistics were used for the 

goodness of fit test. The results show that there are no significant differences between the models and 

there are no strict rules for choosing the probit model or the logit model. 

 
Keywords: Ordinal logit model; ordinal probit model; parallel slopes assumption 

 

Introduction  

 

In cases where the dependent variable is categorical in a multivariate model, the estimations 

obtained by the Ordinary Least Squares regression (OLS) method used in multiple regression 

analysis are insufficient. In a multivariate model, if the dependent variable has a nominal or 

categorical scale and the independent variables have the same type of scale, the most 

appropriate types of models for this data set are logit, probit, Linear Probability Model 

(LPM) or tobit models. Among them, logit and probit models are models developed as LPM 

alternatives. The Tobit model is used for censored data structures. 

 

Logit models are a method that helps to perform classification and assignment process used 

to determine the relationship with independent variables in cases where the dependent 

variable is observed in binary, triple and multiple categories. For logit models, as in multiple 
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regression analysis, there is no normality and continuity assumption prerequisite. There are 

three basic methods in logit models; binary logit, ordinal logit and nominal logit regression 

model. In the binary logit model, the dependent variable contains binary responses. It is 

applied when the dependent variable is ordinal in the ordered logit model. The ordinal scale 

dependent variable consists of at least 3 categories. When determining these categories, the 

answers should be in natural order. For example, if the severity of the disease is in question, 

categories as mild-moderate-severe can be determined. The code values of ordinal values 

must follow the same order of magnitude (1-2-3 etc). The nominal scale model is applied 

when the dependent variable is nominal scale. As with the ordinal scale, it should contain 

values observed in at least 3 categories. However, it is not necessary for the categories to 

follow a sequence in coding the observed values. For example, occupational groups such as 

engineering, banking, medicine, etc. can be nominally determined. 

 

The dependent variable examined in most of the studies, especially in the field of social 

sciences and health, is categorical and ordinal. One of the mistakes that researchers 

frequently make in such studies is to calculate the categorical dependent variable 

probabilities with the help of Multinomial Logit analysis, forgetting that the categorical 

dependent variable is in an ordered structure (Finney, 1971). In logit models, the natural 

logarithm of the probabilities of the ordinal dependent variable is expressed as a linear 

function of the independent variables. Therefore, the logit model is a member of the 

"generalized linear models" family, and the logit transform, that is, the natural logarithm of 

the ratios of the independent variable, is used as a link function. In ordinal logit models, the 

latent variable approach is used and the dependent variable is estimated as a function of this 

unobservable variable (Jackman, 2000). 

 

There are different Logit rendering formats used for dependent variable comparisons in 

ordinal logit models. Cumulative logit models are the easiest to interpret and the most 

frequently used. Cumulative logit models are divided into three; Proportional Odds Model 

(POM), Non-Proportional Odds Model (NPOM) and Partial Proportional Odds Model 

(PPOM) (Arı and Yıldız, 2014). In the POM, unlike the Multinomial Logit model, the 

cumulative logits created have a parallelism assumption, Parallel Slopes Assumption or a 

proportional risk assumption (Proportional Odds Assumption). For ordinal categories, 

estimation methods generally assume that the estimated coefficients of the independent 

variables do not vary between categories. This is called the parallel slopes (lines) assumption. 

 

However, this assumption is mostly not met or it is seen that it is ignored by researchers. If 

this assumption is not met, the results of ordinal logit models cannot be trusted and 

alternative models are recommended. In cases where the assumption is not met, it is seen that 

the multinomial logit model is applied even in cases where there are models with dependent 

variables in an ordered structure. Applying an unordered model to a model whose dependent 

variable has an ordered structure will cause efficiency losses in the prediction results. On the 

contrary, when a model with an ordered structure is applied to a model with an unordered 

dependent variable, it will cause serious deviations in the estimation results (Amemiya, 

1985). 
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Problems with the assumption of parallel slopes must be considered in the empirical analysis 

of categorical dependent variables. To deal with this, information is needed about the effects 

of independent variables on different categories. An analysis based on a basic theory that 

provides information about variables violating the parallel slopes assumption may be 

preferable. However, the assumption of parallelism must be satisfied in the classical ordered 

logit and ordered probit models. In cases where this assumption is not met, the use of the 

proportional risk model is incorrect (Hosmer and Lemeshow, 2000). 

 

Another method that can be used when the assumption of parallelism is not met is the 

Multinomial Logit model. However, in the Multinomial Logit model, the ordinal structure of 

the dependent variable is ignored and is nominally included in the model. Therefore, a search 

is made for a model that both takes into account the ordinal structure and relieves the rather 

rigid proportional risk assumption. In recent years, the Generalized Ordinal Logit Model, also 

known as the Non-Proportional Odds Model, has been used in cases where the assumption of 

parallelism is not met and the Proportional Odds Model is insufficient (Bender and Grouven, 

1998; Arı and Yıldız, 2014). Another method is the Generalized Probit Model. This model 

both considers the ordinal structure of the dependent variable and does not restrict the 

proportional odds assumption (Hardin and Hilbe, 2001). 

 

The probit model is an alternative to the logit model. This model belongs to the family of 

generalized linear models. It is used when the dependent variable is two-category and multi-

category, as in the logit model. It is seen that the ordinal probit model is widely used if the 

values of the dependent variable take more than two values and are in an ordered structure. In 

this model, as in the logit model, parallelism assumption is required. Both models give very 

similar results. However, the logit model is more popular than the probit model. One of the 

most important reasons for this is that while the logit model uses OR (Odds Ratio) values, 

which are easier to interpret while calculating the coefficients, the cumulative normal 

distribution is used in the probit model. 

 

Research Method 

 

Parallel Slopes Assumption 

 

The basic assumption for the ordered logit and ordered probit models is the parallel slopes 

assumption. The parallel slopes assumption states that the categories of the dependent 

variable are parallel to each other. When this assumption is not met, no parallelism is 

achieved between the categories. According to this assumption, the parameters should not 

change for different categories. In other words, the correlation between the independent 

variable and the dependent variable does not change for the categories of the dependent 

variable, and the parameter estimates for the cut-off points do not change (Ananth and 

Kleinbaum, 1997). Figure 1 shows whether the parallel slopes assumption is valid or not 

(Peterson and Harrell, 1990). 

 



24 

 

 

JIS Journal of Interdisciplinary Sciences, Volume 6, Issue 2, November. (2022)  

 Öznur İşçi Güneri, Burcu Durmuş and Aynur İncekırık 
www.journalofinterdisciplinarysciences.com 

  
This work is licensed under a Creative Commons Attribution 4.0 International License 

 
Figure 1. Conditions where the parallel slopes assumption is valid and not valid 

 

Parallel slopes approach 1 in each of the 3 probabilities shown in Figure 1 with the increase 

in independent variables if the assumption is met. As seen in Figure 1, although the slopes of 

all 3 curves are the same, the threshold parameters differ. Whether the β coefficients of the 

independent variable are equal for each category is tested with the null hypothesis given in 

Equation 1: 

              (   )                  ) (1) 

 

To test whether the parallel slopes assumption is met, the Likelihood Ratio Test, Wald chi-

square test and other related tests are used (Jackman, 2000; Liao, 1994). In the ordered logit 

model, these tests examine the equality of different categories and decide whether the 

assumption is valid. If the assumption of parallel slopes is not satisfied, interpretations of the 

results will be inaccurate. For this reason, alternative models such as generalized ordinal logit 

model and multinomial logit model are used instead of ordered logit and ordinal probit 

regression models to find correct results. 

 

Ordinal Logit Model (OLM) 

 

In some cases, the multi-category dependent variable may be in an ordered structure. Such 

situations are mostly encountered in Likert type scales in survey studies or in studies 

conducted to measure disease severity in the field of health. There is a clear orderable 

structure between the dependent variable categories. However, the distances between 

consecutive categories are not equal to each other (Bender and Grouven, 1998). 

 

Since the dependent variable categories are not measured with a range scale and the distances 

between consecutive categories are not equal, this type of data cannot be easily modeled with 

classical regression. On the other hand, using the Multinomial logit model on such data 

ignores this structure of the ordinal dependent variable and is insufficient to use all the 

information in the dependent variable (Finney, 1971). For these reasons, ordinal logit models 

have found wide use in the analysis of this type of data (Timur and Akay, 2017). The ordinal 

logit model is a natural extension of the binary logit model and given as in Equation 2: 
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          (2) 

 

Here    is the latent variable,   is the unknown parameters and   is the error term. 

Considering that the dependent variable has J ordered categories, the relationship between the 

observed categories of τ cut off/threshold values can be given as in Equation 3: 

 

   

{
  
 

  
 
                             
                      
                 

     
 
 
 

                      
 

                       (3) 

 

Cumulative logit models are the most widely used method in ordinal logit models. Other logit 

models used in ordinal logit models, apart from cumulative logit models, are Adjacent 

Category Logit and Continuation Ratio Logit models. These three models differ according to 

which categories and how they are compared (Finney, 1971; Liao, 1994). 

 

Cumulative Logit Models 
 

Where the dependent variable category is ordinal, the category probabilities are often 

expressed in terms of cumulative probabilities. In general, the cumulative probability for 

category   is defined as in Equation 4: 

 

 (   )   (   )   (   )      (   ) (4) 

 

Here, the dependent variable   consists of the   order categories.   is the unknown threshold 

values separating ordinal categories. The expression in Equation 4 can be written more 

clearly as in Equation 5. Thus, the cumulative probability equation is reached (Jackman, 

2000). 

 

 (   )   (   ∑     
 
   )  

    (   ∑     
 
   )

      (   ∑     
 
   )

                    (5) 

 

The cumulative logit model is created by using the cumulative probability P(  ≤  ) instead of 

the category probability P(  =  ) in the logit transformation. From the definition of the logit 

link function, the cumulative logit model is written as follows (Liao, 1994): 

 

     [ (   )]     [
 (   )

   (   )
]                       (6) 
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The expression 
 (   )

   (   )
 in Equation 6 given above is defined as the cumulative risk 

(Cumulative Odds) for the  th dependent variable category. Therefore, cumulative logit 

models use the ordinal structure and are obtained by dividing the probability of falling into a 

lower category by the probability of falling into a higher category for the  th dependent 

variable category. As with different models, a category is chosen as the reference category 

(usually the highest category). The     cut off point is estimated in this way, and the 

estimates provide information about the cumulative probabilities for each consecutive 

category. In cumulative probability, the probability of being in the selected category or being 

in a subcategory is considered together (Fullerton and Xu, 2012). 

 

Cumulative logit models are divided into three main model groups based on the assumption 

of parallelism. These models are proportional odds, non-proportional odds and partial 

proportional odds models (Butler and Moffitt, 1982; O’Connell, 2006; Long, 1997). These 

models are briefly described below.  

 

i. Proportional Odds Model (POM) 

 

The Proportional Odds Model was defined by McCullagh (1980) for ordinal logistic 

regression (O’Connell, 2006). The model is based on the cumulative distribution function. 

Proportional odds models are widely used when the dependent variable is ordinal and parallel 

slopes assumption is valid (Hosmer and Lemeshow, 2000; Barak, 2005). In the cumulative 

logit model, when the cumulative probability values are placed in the logistic distribution, the 

equations obtained for the proportional probability model are given in Equation 7 (Timur and 

Akay, 2017): 

 

     [ (   )]     [
 (   )

   (   )
]     [

 (   ∑     )
 
   

   (   ∑     )
 
   

]  

 

     [ (   )]     [   (   ∑     
 
   )]     ∑     

 
                  (7) 

 

In the proportional odds model given above, each cumulative logit has its own threshold 

value, represented by   . When the dependent variable categories are denoted by   
         , it is seen that the    coefficients in the equation are independent of the 

dependent variable categories. 

 

In the proportional odds model (Equation 7), there is a (-) sign in front of the    coefficients. 

The meaning of this negative sign is that the probability of falling into the lower category 

with a positive    coefficient is inversely proportional to  (   ). In other words, a positive 

   coefficient indicates that the probability of falling into a lower category decreases, while 

the probability of falling into a higher category increases if  (   ) (Finney, 1971). For the 

opposite situation, a negative    coefficient indicates that the probability of falling into the 

lower category  (   ) increases, and the probability of falling into the higher category 

 (   ) decreases. In the proportional risk model, the    coefficient gives the effect of a 
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one-unit increase in the kth independent variable on the dependent variable, as in other linear 

models. 

 

ii. Non-Proportional Odds Model (NPOM)  

 

The proportional odds assumption may not be satisfied in some cases. In cases where this 

assumption is not met, generalized logit and Multinomial Logit models can be used. It should 

be noted that the ordinal structure of the dependent variable in the Multinomial Logit model 

is ignored and it is nominally included in the model (Hosmer and Lemeshow, 2000). 

Therefore, a search is made for a model that both considers the ordinal structure and relieves 

the rather rigid proportional odds assumption. 

 

In the non-proportional odds model proposed by Fu (1998), contrary to the multinomial logit 

model, cumulative logits are used during logit creation, but the proportional odds assumption 

is not met (Butler and Moffitt, 1982). In other words, in this model, the effect of independent 

variables on the dependent variable odds (cumulative odds) is no longer equal and when the 

dependent variable category is denoted by            , the     coefficients are different 

for each dependent variable category (Arı and Yıldız, 2014; Butler and Moffitt, 1982). The 

non-proportional odds model (the generalized ordinal logit model) can be written as in 

Equation 8: 

 

     [ (   )]     [
 (   )

   (   )
]     [

 (   ∑      )
 
   

   (    ∑      )
 
   

] (8) 

 

     [ (   )]     [   (   ∑      
 
   )]      ∑      

 
                 

 

In the non-proportional risk model, each cumulative logit has its own threshold value, 

represented by   . When the dependent variable categories are denoted by            , 

the coefficients of     in the equation take different values in each dependent variable 

category. In the non-proportional odds model, the coefficient     gives the effect of a one-

unit increase in the kth independent variable on the cumulative logit. 

 

iii. Partial Proportional Odds Model (PPOM) 

 

The partial proportional odds model can be used when the parallel slopes assumption is valid 

or not. This model was first proposed by Peterson and Harrell (1990) (Long, 1997). The 

partial proportional odds model has the same characteristics as both the proportional odds 

model and the disproportionate odds model (Long, 1997; Agresti, 2002). PPOM has been 

defined in two ways; the constrained proportions model and the unconstrained proportions 

model. 

 

 

 

 



28 

 

 

JIS Journal of Interdisciplinary Sciences, Volume 6, Issue 2, November. (2022)  

 Öznur İşçi Güneri, Burcu Durmuş and Aynur İncekırık 
www.journalofinterdisciplinarysciences.com 

  
This work is licensed under a Creative Commons Attribution 4.0 International License 

a. Unconstrained Partial Proportional Odds Model (UPPOM) 

 

Two different sets of coefficients are estimated in UPPOM; the first set holds the assumption 

of parallel slopes and the second set does not hold the assumption of parallel slopes. The 

general form of the model can be written as in Equation 9 (Agresti, 2002); 

 

 (   )  
    (     

       )

      (     
       )

                 (9) 

In this model, if the value of   is equal to 0, the assumption of parallel lopes is valid and the 

model takes the form of POM (Long, 1997; Agresti, 2002). 

 

b. Constrained Partial Proportional Odds Model (CPPOM) 

 

In the non-proportional risk model, constraints are defined for a group of disproportionate 

variables. The model becomes constrained when the coefficients at the changing breakpoints 

are multiplied by a predefined constant scalar. Since there will be parallelism between 

constrained variable coefficients, CPPOM will need fewer parameters than unrestricted 

PPOM and NPOM (Agresti, 2002). The general form of the model is given in Equation 10 

(Long, 1997). 

 

 (   )  
    (     

        )

      (     
        )

                 (10) 

 

In this model,   is a predefined constant scalar.   is a vector and does not depend on  . 
 

Ordinal Probit Model (OPM)  

 

The probit model is an alternative to the logit model. Analysis of ordered responses begins 

with the expansion made by Finney (1971) on Aitchison and Silvey (1957) (Snell, 1964; Fox, 

1997). Another pioneering study is the parallel development of Snell's (1964) differential 

treatment of ordinal outcomes (Aitcheson and Silvey, 1957; Greene, 2012). The modern form 

of the ordinal probit model was proposed by McElvey and Zavoina (1975) for the analysis of 

ordered, categorical, non-quantitative choices, outcomes, and responses.  

 

The ordinal probit model is used in many studies with ordinal structure. The places where 

this model is widely used include bond ratings, preferences in consumption, satisfaction and 

health status surveys. The model is used to describe the data generation process for a random 

result that takes one of a series of discrete, ordered results (Aitcheson and Silvey, 1957). For 

example, in clinical studies, when investigating the effect of a drug on a patient, while the 

dependent variable can be categorical variables such as complete cure (1), alleviation of 

symptoms (2), no effect (3), worsening (4), death (5), the independent variables may include 

variables such as age, gender, blood pressure, heart disease etc. In another example, the 

ordinal probit model in the Likert-type scale (strongly disagree, agree, strongly agree), which 

is widely used in survey research, makes no assumptions for the interval distances between 
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the options, preserving the order of the options of the dependent variable, and adapts 

appropriately to this data. 

 

The traditional ordinal probit model states that all variables are restrictive and satisfy the 

parallel slopes assumption. If this assumption is not met, one of the alternative methods is the 

generalized probit model. This model, on the other hand, uses a completely flexible approach 

and allows all coefficients to vary between categories, which is a very strong assumption. It 

is seen that the ordinal probit model is widely used if the values of the dependent variable 

take more than two values and are in an ordered structure. In general, the ordered probit 

model can be written as in Equation 11. 

 

    
         (11) 

 

Here    is the definite but unobserved dependent variable (order of levels);   is the vector of 

independent variables and   is the vector of regression coefficients that we want to predict. 

Also, even if    is not observed, it is assumed that the categories of the dependent variable 

can be observed (Fu, 1998), then it can be written as in Equation 12; 

 

   

{
  
 

  
 
                             
                      
                 

     
 
 
 

                      
 

              (12) 

 

Here, the   refers to the unknown threshold values that separate the categories. With the 

assumption that the errors are normally distributed in the ordinal probit model, the likelihood 

function can be estimated using the Gauss-Hermite Quadrature approach developed by Butler 

and Moffitt (1982) (Greene and Hensher, 2010). The      threshold parameter of the latent 

variable    is obtained. If the model is a constant term,     threshold parameters are 

estimated. Since the first threshold parameter is zero, the threshold parameters are all 

positive. The probabilities of each ordinal outcome are as in Equation 13 (McCullagh, 1980): 

 

 [    ]   [  
   ]   (      )       

 [    ]   [    
    ]   (      )   (      )      

 [    ]   [     
     ]   (      )   (      )      

. 

. 

.  (13) 

 [    ]   (      )   (        )   

The general format for   =   (highest category) is reduced to Equation 14: 
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 [    ]   (      )   (        )     (        ) (14) 

 

We can use MLE to predict this model. For the MLE function, Zij is defined as the indicator 

variable, equal to 1 if     , equal to 0 otherwise. If      [      ]  and         

 [        ], the log likelihood function is given as in Equation 15 (McCullagh, 1980); 

 

     ∑ ∑       [          ]
 
   

 
    (15) 

 

Model Validity Tests and Goodness of Fit Indicators 

 

Likelihood Ratio Test Statistics (LR) 

 

The LR test is a common measure used to investigate the effect of the independent variable 

or variables in the model on the dependent variable. The LR test statistic can be generalized 

to test the significance of the independent variables included in the model. When the log-

likelihood of the model with k independent variables is Lk and the log-likelihood of the 

model with k+p is represented by Lk+p, the test statistic of the Generalized Likelihood Ratio is 

as in Equation 16 (Brant, 1990): 

 

     (       ) (16) 

 

The likelihood ratio test statistic shows the chi-square distribution in p degrees of freedom 

(     
 ). It should be noted that the generalized likelihood ratio test statistic is used only for 

nested model comparisons. 

 

Deviance (D) 

 

In generalized linear models, the deviation measure is an indication of how much the actual 

values differ from the predicted values. With this aspect, the deviation measure is equivalent 

to the error sum of squares (SSE) in classical linear models (Finney, 1971). A complex model 

containing as many parameters as the number of observations is called a fully saturated 

model. When log-likelihood LS obtained from the saturated model (Log-Likelihood of the 

data set) is shown with the log likelihood LM (Log-Likelihood of the model) obtained from 

any sub-model of the saturated model created by the variables considered to be significant, 

the deviation measure is as in Equation 17: 

 

    (     )  (17) 

 

A smaller deviation is an indication of a better fit of the model to the data, since the deviation 

measure will give the magnitude of the deviation from the true values. 
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Akaike Information Criteria (AIC) 

 

With this criterion proposed by Akaike (1973), information can be obtained about which 

model fits the data better (Arı and Yıldız, 2014). The Akaike Information Criterion (AIC) is 

used for model comparisons that are either nonnested or calculated from different samples. 

When the log-likelihood of the model is  , the number of independent variables in the model 

is  , and the number of observations is n, AIC value is calculated as in Equation 18: 

 

    
      ( )   

 
 (18) 

Smaller values of the AIC are an indication of a better fit of that model to the data. Therefore, 

among several models, the model that best fits the data is the one with the smallest AIC. In 

cases where the number of parameters is large compared to the sample size, AICc suggested 

by Hurvich and Tsai should be used instead of AIC. 

 

Bayesian Information Criteria (BIC) 

 

The Bayesian Information Criterion is based on Bayesian comparison of models. The 

Bayesian Information Criterion is used in model comparisons that are not nested or 

calculated from different samples, as in AIC. The Bayesian Information Criterion is 

calculated as in Equation 19: 

 

         ( )      ( ) (19) 

 

Smaller values of the BIC are an indication of a better fit of that model to the data. Therefore, 

among several models, the model that best fits the data is the one with the smallest BIC. 

 

McFadden’s Adjusted Likelihood Ratio Index 

 

When the log likelihood of the model with only constant term is L0 and the log likelihood of 

the model with k independent variables is indicated by L1, McFadden's adjusted Likelihood 

Ratio indicator is calculated as in Equation 20: 

 

 ̅        
    

    

  
 (20) 

 

McFadden's corrected likelihood ratio indicator is referred to as Pseudo R
2
 in most statistical 

packages. This indicator can be calculated for any model calculated with the MLE method. 

Among the models, the model with the largest R
2
 is the model that best fits the data. 

 

Application  

 

The dataset was obtained from a survey conducted in 2018 to evaluate the experiences and 

opinions of patients and their family members on satisfaction with healthcare services in 
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Macedonia (Dimitrievska and Tomovska, 2020). The sample size consists of 500 people. 

Data were collected using a Likert scale between 1-5 points. 

 

The dataset is available at https://www.kaggle.com/datasets/vdimitrievska/patient-

satisfaction-dataset?select=datasetsatisfaction.csv. For more information, see the study of 

Dimitrievska and Tomovska, 2020 (Factors connected to patients' satisfaction in the health 

care system in North Macedonia). Stata 13 statistical package program was used for analysis. 

Dependent variable: overall patient satisfaction (1: yes, 2: no, 3: partly) 

Independent variables:  

 Check-up appointment (Checkup_appointment) 

 Time waiting (Time_waiting) 

 Admin procedures (Admin_procedures) 

 Hygiene and cleaning (Hygiene_cleaning) 

 Time of appointment (Time_of_appointment) 

 Quality/experience (Quality_experience_Dr) 

 Doctor Specialists available (Specialists_avaliable_Dr) 

 Communication with doctor (Communication_with _Dr) 

 Exact diagnosis (Exact_diagnosis) 

 Modern equipment (Modern_equipment) 

 Friendly health care workers (Friendly_health_care_workers) 

 Laboratory services (Lab_services)  

 Availability of drugs (Availability_of_drugs) 

 Waiting rooms (Waiting_rooms) 

 Hospital rooms quality (Hospital_rooms_quality)  

 Quality parking, playing rooms, cafe’s (Parking_others) 

 

The distribution of frequencies for the dependent variable is shown graphically in Figure 2. 

 
Figure 2. Distribution of the satisfaction variable 

Frequency distribution across the categories of the satisfaction variable is given in Table 1. 
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Table 1. Frequency Distribution of Dependent Variable 

Satisfaction Freq. Percent Cum. 

1 7 1.55 1.55 

2 241 53.32 54.87 

3 204 45.13 100.00 

Total 452 100.00 

 When the frequency distribution in the data set is examined, it is seen that it is concentrated 

in the 2th and 3th categories. According to Table 1, the percentages of category levels are 

1.55%, 53.32% and 45.13%, respectively. 

 

Ordinal logit model results 

 

Due to the natural ordered structure of the dependent variable, the logit model was preferred 

first in the application. The results found for the ordinal logit model are given in Table 2. 

 

Table 2. Ordinal Logit Model Results 

Satisfaction Coef. Std. Err. z P>z [95% Conf. Interval] 

Checkup_appointment .0006272 .0903114 0.01 0.994 -.1763799 .1776343 

Time_waiting -.0814159 .100526 -0.81 0.418 -.2784432 .1156114 

Admin_procedures -.0709189 .1038348 -0.68 0.495 -.2744313 .1325934 

Hygiene_cleaning -.0845556 .1152066 -0.73 0.463 -.3103564 .1412451 

Time_of_appointment .043907 .104093 0.42 0.673 -.1601115 .2479255 

Quality_experience_Dr .2159781 .094716 2.28 0.023 .0303381 .4016181 

Specialists_avaliable_Dr -.0318688 .1034881 -0.31 0.758 -.2347017 .1709641 

Communication_with _Dr -.0609047 .112261 -0.54 0.587 -.2809322 .1591228 

Exact_diagnosis .2602155 .1023569 2.54 0.011 .0595997 .4608313 

Modern_equipment -.2055631 .1059302 -1.94 0.052 -.4131826 .0020563 

Friendly_health_care_workers -.0769104 .1057555 -0.73 0.467 -.2841874 .1303666 

Lab_services -.004348 .0932292 -0.05 0.963 -.1870739 .178378 

Availability_of_drugs .0594051 .0910271 0.65 0.514 -.1190048 .2378149 

Waiting_rooms -.1065645 .1240415 -0.86 0.390 -.3496815 .1365525 

Hospital_rooms_quality .0322269 .1438462 0.22 0.823 -.2497065 .3141603 

Parking_others .0243604 .1328899 0.18 0.855 -.236099 .2848199 

/cut1 -4.392466 .4754762 

  

-5.324.382 -3.46055 

/cut2 .089035 .2956981 

  

-.4905226 .6685926 

 LR chi
2
(16) = 30.81 Prob > chi

2
 = 0.0142 Pseudo R

2
 = 0.0449 

 

According to Table 2, variables of quality experience Dr, exact diagnosis, and modern 

equipment were found to be significant (p<0.05). The cut-off points or thresholds used to 
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distinguish between quality levels are shown at the bottom (cut 1, cut 2). The estimated 

threshold parameter for the 3-level dependent variable is 2. We can write the ordered logit 

model as in Equation 21. 

 

    
  
                                                      
                                                                                                                    (21) 

 

The representation of threshold values is as in Equation 22. 

 

                                     {

 
                           
                               

                                   (22)                       

 

According to the results obtained, when other variables are kept constant, the 

quality_experience Dr is at 1, 2 and 3 satisfaction level 1.24% [OR= exp(.2159781)=1.24] 

and the exact_diagnosis is 1.29% [OR=exp(.2602155)=1.29] increases. Other variables can 

be interpreted similarly. 

 

The accuracy of the model was tested by calculating statistics on the threshold parameters 

(p<0.05). The coefficient, standard error and probability values for the threshold parameters 

are given in Table 3. 

 

Table 3: Test of significance of threshold parameters 

Satisfaction Coef. Std. Err. z P>z [95% Conf. Interval] 

cut 1- cut 2 4.481501 .385791 11.62 0.000 3.725.365 5.237.638 

 

The ordinal logit (probit) model assumes that the distance between each category of outcome 

is proportional. In practice, violating this assumption may or may not change your material 

results. You need to test if this is the case. A Brant-developed Wald test or LR test can be 

used to test whether the proportional probabilities i.e. parallel slopes assumption is valid. 

 

The validity of the parallel slopes assumption for the ordinal logit model was investigated 

with the Brant test. When Table 4 is examined, it is seen that the assumption is met since all 

the p values are greater than 0.05 (p>0.05). This indicates that the model is significant. 

Therefore, the classical logit model, that is, the proportional risk model, is suitable. 

 

Table 4. Brant test of parallel regression assumption 

 chi
2
 p>chi

2
 df 

All  21.45 0.162 16 

Checkup_appointment 0.04 0.836 1 

Time_waiting 0.67 0.413 1 
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Admin_procedures 0.24 0.622 1 

Hygiene_cleaning 5.19 0.023 1 

Time_of_appointment 1.84 0.175 1 

Quality_experience_Dr 0.08 0.781 1 

Specialists_avaliable 0.14 0.704 1 

Communication_with_Dr 0.00 0.954 1 

Exact_diagnosis 0.10 0.752 1 

Modern_equipment 0.18 0.673 1 

Friendly_health_care_workers 0.16 0.690 1 

Lab_services 0.14 0.704 1 

Availability_of_drugs 0.06 0.800 1 

Waiting_rooms 2.30 0.129 1 

Hospital_rooms_quality 0.06 0.803 1 

Parking_others 2.81 0.094 1 

 

The parallel slopes test can help you evaluate whether it is reasonable to assume that the 

parameters are the same for all categories. This test compares the predicted model with a set 

of coefficients for all categories with a model that has a separate set of coefficients for each 

category. Poor model fit may also be due to the chosen ordering of the dependent variable 

categories. This can happen for many reasons, including using an incorrect link function or 

using the wrong model. 

 

After the satisfaction of the assumption of parallel slopes, the probabilities of the ordinal logit 

model were calculated. Descriptive statistics for these probabilities are given in Table 5. 

 

Table 5. Descriptive statistics of probabilities of OLM 

Variable n Mean Std. Dev. Min Max 

p1ologit 452 .0155102 .0080081 .0030056 .0621422 

p2ologit 452 .5320837 .1198791 .2073504 .7919829 

p3ologit 452 .4524061 .1271395 .1458749 .7896441 

 

The mean values of the ordinal logit model in Table 5 and the % values in Table 1 were 

found to be very close to each other. In Table 5 considering the mean values, the mean 

probability values for 1, 2 and 3 were found to be 1.55%, 53.2% and 45.24%, respectively. 

The model can be said to fit the data reasonably. Estimated probabilities are similar to real 

ones. Figure 3 shows the graph of the probabilities of the ordinal logit model. 
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Figure 3. Graph of estimated probabilities for the ordinal logit model 

According to Figure 3, satisfaction is below 0.20 at the 1st level between 0.20 and 0.80 at the 

2nd and 3rd levels. 

 

Ordinal probit model results 

 

Ordinal probit was applied to the same data since the dependent variable was in an ordinal 

structure. The results found for the ordered probit model are given in Table 6. 

 

Table 6. Ordinal Probit Model Results 

Satisfaction Coef. 

Std. 

Err. z P>z 

[95% 

Conf. Interval] 

Checkup_appointment 

-

.004764

4 

.054488

6 -0.09 0.930 -.11156 .1020313 

Time_waiting 

-

.060626 

.060171

4 -1.01 0.314 -.1785597 .0573078 

Admin_procedures -.03291 .062253 -0.53 0.597 -.1549237 .0891037 

Hygiene_cleaning 

-

.023079

3 

.068641

7 -0.34 0.737 -.1576145 .1114558 

Time_of_appointment 

.006615

6 

.061937

7 0.11 0.915 -.1147801 .1280113 

Quality_experience_Dr 

.124018

9 

.056911

1 2.18 0.029 .0124752 .2355625 

Specialists-avaliable 

-

.016847 

.061370

8 -0.27 0.784 -.1371316 .1034377 

Communication_with_Dr 

-

.039764

5 .066984 -0.59 0.553 -.1710508 .0915219 

Exact_diagnosis .150589 .061192 2.46 0.014 .0306553 .2705241 

0
.2

.4
.6

.8

Pr(satisfactioninrm==1) Pr(satisfactioninrm==2) Pr(satisfactioninrm==3)
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7 1 

Modern_equipment 

-

.125669

5 .063257 -1.99 0.047 -.2496508 

-

.0016881 

Friendly_health_care_workers 

-

.043833

1 

.064022

5 -0.68 0.494 -.1693149 .0816487 

Lab_services 

.003450

3 

.055877

9 0.06 0.951 -.1060685 .112969 

Availability_of_drugs 

.039937

2 

.054770

2 0.73 0.466 -.0674104 .1472847 

Waiting_rooms -.08519 .073853 -1.15 0.249 -.2299393 .0595592 

Hospital_rooms_quality 

.025886

4 .087083 0.30 0.766 -.1447932 .196566 

Parking_others 

.037237

8 

.079905

8 0.47 0.641 -.1193747 .1938503 

/cut1 

-

2.27381 

.224149

7 

-

2.713136 

-

1.834485   

/cut2 .082684 

.176437

5 

-

.2631272 .4284952   

 

LR chi
2
(16) = 

28.38 Prob > chi
2
 = 0.0285 Pseudo R

2
 = 0.0414 

 

Similar to the ordinal logit model, quality_experience_Dr, exact_diagnosis, and 

modern_equipment variables were found to be significant in this model, while the other 

variables were found to be insignificant (p<0.05). We can write the ordered probit model as 

in Equation 23. 

 

    
  
                                                    
                                                                                                                (23) 

 

The representation of the threshold values for probit model is as in Equation 24; 

 

                                     {

 
                          
                            

                                      (24)                       

 

As with binary probit models, the results here are z-scores. So, the interpretation here is no 

different from binary probit models, except that the sequencing is reflected in this case. For 

example, if an interpretation is made for the quality_experience_Dr variable, it shows that a 

unit increase in quality_experience_Dr will lead to an increase of 0.124 points in favour of 

satisfaction in the z-score. Z-scores are similar in sign and significance to log ratios (OR) 

(negative and positive variables). In addition, their slope is interpreted in the same way. As in 

the ordinal logit model, probabilities are calculated in the ordinal probit model. Descriptive 

statistics of these probabilities are given in Table 7. 
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Table 7. Descriptive statistics of OPM's probabilities 
Variables n Mean Std. Dev. Min Max 

 p1oprobit 452 .0162487 .0120205 .0008138 .0932951 

 p2oprobit 452 .5314265 .1091706 .2126567 .756548 

 p3oprobit 452 .4523248 .1194992 .1501569 .7865295 

 

The mean values of the ordinal probit model in Table 7 and the % values in Table 2 were 

found to be very close to each other. Again, we can say that this model fits the data 

reasonably well. Thus, the estimated probabilities are similar to the real ones. Figure 4 shows 

the graph of the probabilities of the ordinal probit model. 

 
Figure 4. Graph of predicted probabilities for the ordinal probit model 

 

When probabilities are examined according to the ordinal probit model in Figure 4, results 

close to the estimates obtained with the ordinal logit model given in Figure 3 are found. 

 

In this study, ordinal logit and probit models were used to test the patients' satisfaction. First 

of all, the assumption of parallelism was checked for the data and it was seen that the 

assumption was met for the logit and probit models to be applied. Goodness-of-fit statistics 

for this data set in question are given in Table 8.  

Table 8. Goodness of Fit Statistics 

 
OLM OPM 

Log-likelihood 

 

 

Model -327.624 -328.841 

Intercept-only -343.030 -343.030 

Chi-square 

 

 

Deviance (df=434) 655.247 657.681 

LR (df=16) 30.814 28.380 

0
.2

.4
.6

.8

Pr(satisfactioninrm==1) Pr(satisfactioninrm==2) Pr(satisfactioninrm==3)
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p-value 0.014 0.028 

R2 

 

 

McFadden 0.045 0.041 

McFadden (adjusted) -0.008 -0.011 

McKelvey & Zavoina 0.083 0.090 

Cox-Snell/ML 0.066 0.061 

Cragg-Uhler/Nagelkerke 0.084 0.078 

Count 0.613 0.611 

Count (adjusted) 0.171 0.166 

IC 

 

 

AIC 691.247 693.681 

AIC divided by N 1.529 1.535 

BIC (df=18) 765.294 767.728 

Variance of 

 

 

e 3.290 1.000 

y-star 3.587 1.099 

 

When the goodness-of-fit statistics in Table 8 are examined, it is seen that both models are 

suitable for examining the patients' satisfaction, although there are generally smaller values 

for the ordinal logit model. 

 

Conclusion 

 

In ordinal choices models, the dependent variable has the feature of being ordinal in addition 

to its nominal feature. The ordinal logit and probit models are used when the categories of the 

dependent variable are more than two (at least 3) and are naturally ordered. This ordered style 

is mostly used in Likert type scales, especially in survey data. For example, in studies on 

consumer brand preferences, the ranking can be determined as "moderate" "good" "very 

good". In such cases, the categories (levels) of the dependent variable are determined by 

coding as the nominal scale or as 1, 2, 3, …. Thus, the categories have a natural ordering and 

do not have numerical superiority over each other. These models are also known as 

generalized linear models.  

 

Newton Raphson algorithm is the most preferred method to obtain parameter estimates of 

ordinal dependent variable models. The threshold number for these regression models is 1 

less than the category number of the dependent variable. 

 

In order to apply the classical ordinal logit and ordinal probit models, the assumption of 

parallel slopes must be satisfied. When the dependent variable has more than two categories, 

multinomial logit models are also used. However, these model do not take into account the 

ordinal nature of the dependent variable. In other words, they neglect the order that exists 
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between the levels of the dependent variable. If there is uncertainty about whether the 

dependent variable is ordinal or not, it can be estimated with multinomial models to 

determine whether the assumptions are met. 

 

Multinomial analysis techniques used in ordinal or categorical dependent variable models 

ignore the ordinal nature of the dependent variable and assume that it has a nominal structure. 

For this reason, the use of multinomial analyses in cases where the assumption of parallel is 

not provided causes loss of information. At this point, another model has been proposed, 

which provides flexibility in the assumption of parallel slopes and takes into account the 

ordered structure. This model is a generalized ordinal logit model that uses cumulative logit 

models that do not satisfy the parallel assumption. It can also be used in the generalized 

probit model. 

 

When the existing research is examined, it is seen that researchers generally prefer logit 

models. The main reason for this is thought to be the more widespread knowledge of the logit 

model. However, as can be seen from the results, no significant difference was found 

between the two models. There are no strict rules for choosing a probit model or a logit 

model. Sometimes it is desirable to deal with the tail part of the curve. In this case, the choice 

of logit or probit may be important because the tail thickness of the logit model is greater 

than that of the probit. In such cases, the choice of the appropriate model can be decided by 

looking at log probability or goodness-of-fit statistics. When the parallelism assumption is 

not met, other suitable models should be used as mentioned before. 
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